第六百四十六章 于敏构型....问世!(上)(5/8)
手势,解释道:
“大于同志,如果你是要找我讨论氢弹的具体设计说实话我可能无能为力。”
“但这种聚变截面涉及的是粒子物理情景,所以不瞒你说,我还真了解一些。”
“其实导致这种情况的原因很简单,那就是海对面没有考虑到亚原子粒子所具有的量子效应。”
大于顿时一怔:
“量子效应?”
“没错。”
徐云用力点了点头,说道:
“准确来说,是微观粒子的隧穿效应、波动效应、以及共振效应这三个概念。”
“大于,你刚才说你引入了布莱特-维格纳方程,也就是breit-wigner方程对吧?”
“那么你肯定也推导出了这个方程的核聚变变式,也就是单能级中子俘获的共振截面是不是?”
大于立马回了声没错,将手中的笔记本往前翻了一页,露出了上头的一道公式:
σγ(ec)=σ0ΓγΓ(e0ec)121/(1+y2)+2Γ(ece0)。
徐云见状,暗道了一声果然如此。
大于的这道公式其实不难理解,e0就是质心坐标系中共振峰的能量也就是 ec+Δeb与复合核激发态所匹配的能量,Γ为12共振峰值对应的总能量宽度,σ0是最大的截面,Γγ是辐射俘获宽度。
这算是布莱特-维格纳方程的基础变式之一,但更深入的一些物理意义却暂时没被解析出来。
随后徐云想了想,在脑海中过了一遍思路,对大于说道:
“大于,在这个公式的基础上,你先引入量子隧穿,然后想想会发生什么情况?”
“量子隧穿啊”
大于闻言摸了两下下巴,很快开始思考了起来。
量子隧穿。
它是指粒子在经典力学下无法通过能量壁垒,但在量子力学下却有一定概率穿过的现象。
其基本原理是根据量子力学的波粒二象性,粒子可以表现为波的形式,它的波函数可以在势垒外衰减,但是存在一定的概率穿透势垒并进入势垒内部。
在势垒内部,波函数的幅度和相位均受到影响,而在势垒外部,波