当前位置: 笔下文学> 网游动漫> 走进不科学> 第二百八十章 找到你了,柯南!(中)(3/9)

第二百八十章 找到你了,柯南!(中)(3/9)

 随后徐云又写下了两个个公式,也就是次多项式的函数和最小误差值:

    012233。

    ss0102。

    这样一来。

    只要找到合适的系数,就能令误差值最小了。

    而就在徐云优化函数的同时。

    其他人也没闲着,各自按着预定好的计划在行事。

    例如老汤正和来自格林威治天文台的技术人员拍摄着今天的星图,高斯则整理起了布莱德雷家族留下来的独门观测记录:

    “000066045001072261012684538043146853”

    众所周知。

    如果是需要仅仅通过数学来计算行星轨道数据,那么必然会用到开普勒行星三定律:

    第一定律:

    每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。

    第二定律:

    在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。

    也就是b。

    第三定律则是:

    各个行星绕太阳公转周期的平方,和它们的椭圆轨道的半长轴的立方成正比。

    即23,为行星周期,为常数。

    另外还需要用到笛卡尔坐标系下的椭圆曲线,即:

    220。

    有了这些,只要在加上某个工具就能进行计算了。

    后世科技发达,计算轨道的工具一般是np,几秒钟就能计算出结果。

    眼下虽然没有np协助,但这玩意儿的计算逻辑实际上就是最小二乘法。

    而最小二乘法的发明者不是别人,正是高斯

    “04314685301268453800107226120000660453”

    “下一组是031468531021538462012960373”

    “005337995001724942032307692”注:所有数据都来自ns开放的数据库,非杜撰

    过了大概十多分钟。

    负责最终计算的黎曼抹了把额头上的汗水,在纸上写下了一个数字:

上一页 章节目录 下一页