第268章 对定理公式进行去符号化处理,成为学好数学的钥匙!(2/4)
长方形面积,平方具象成正方形面积,立方具象成立方体体积,四次方具象成单位时空扩展等。
学会用点,线段,角度,三角形,矩形,正方形,立方体和圆形,球体等基础图形去具象化数学体系,对它所有的定理公式进行去符号化处理,成为学好数学的钥匙。
我们生活的这个世界上,所有的一切事物都可以拿这些基础形状来对它们进行分解,这是作为一个画画人最基本的素质。
对一个实物进行解构和结构出一个实物的模型,这些都需要用到数学。
面对不同结构的实物时,我们会在基础数学图形化的基础上通过抽象化,符号化来拓展出具体的数学分支体系,比如线性数学,立体数学,流体数学,图论,拓扑数学,簇论等。
想明白了这些,在回过头来看高中数学,那就很简单了!
数学无非就是抽象化建模和具象化解构的过程研究。
所以,我们要先去学各种抽象化的数字,符号,公式,甚至结论!
不能把它们图形化,具象化的情况下,我们就是整天在抽象思维里玩符号游戏。
数学难学,其实是违背人脑认知习惯的抽象思维或者特定符号化造成的。
回归数学的本质,图形化,具象化,去符号化,真正从本质上去理解数学,才能真正学好数学。
一堆数字符号,根本没有生命,你只是凭借记忆在运用规则,即使你得到了想要的答案也不知道这个算式或者这个结果它是在描述什么现象。
人为地把数学的学习与它所依托的基础严重的割裂也是数学难学的原因。
所以要想学好数学,绝对不能脱离图形,首先训练自己在数学抽象化符号与具象化图形之间来回转化切换。
也就是说,必须学会既能进入数学语言体系里,借助它提供的工具和已经被前人计算出的结果,又能从这个体系里出来,回到我们人类熟悉的图形化具象化的世界里,按照我们人类大脑最容易理解和记忆的方式来理清解决数学问题的思路。
比如说零,在数学符号语